Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel
نویسندگان
چکیده
Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30-1000 s(-1). The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability.
منابع مشابه
Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver ...
متن کاملMicrofluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality.
The fabrication of a novel microfluidic system, integrated with a set of laser-controlled microactuators on an ePetri on-chip microscopy platform, is presented in this paper. In the fully integrated microfluidic system, a set of novel thermally actuated paraffin-based microactuators, precisely controlled by programmed laser optics, was developed to regulate flow and to provide pumping of liquid...
متن کاملA high-shear, low Reynolds number microfluidic rheometer
We present a microfluidic rheometer that uses in situ pressure sensors to measure the viscosity of liquids at low Reynolds number. Viscosity is measured in a long, straight channel using a PDMS-based microfluidic device that consists of a channel layer and a sensing membrane integrated with an array of piezoresistive pressure sensors via plasma surface treatment. The micro-pressure sensor is fa...
متن کاملDirect measurement of the differential pressure during drop formation in a co-flow microfluidic device.
In this study, we developed a new method for the direct measurement of differential pressures in a co-flow junction microfluidic device using a Capillary Laplace Gauge (CLG). The CLG - used inside the microchannel device--was designed using a tapered glass-capillary set up in co-flow junction architecture with a three-phase liquid-liquid-gas system with two flowing liquid phases and an entraine...
متن کاملDesign of terahertz metal-dielectric-metal waveguide with microfluidic sensing stub
We design a terahertz (THz) metal-dielectric-metal (MDM) waveguide sensor with embedded microfluidic channel suitable for sensing the refractive index variations in liquid. The transmission properties are described using transmission line model (TLM) and numerically simulated using finite-difference time domain (FDTD) method. The sensing characteristics of the structure are systematically analy...
متن کامل